
MAB ROBOTICS

MD80 x CANdle User Manual
rev 2.1 - 12.12.2022

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

TABLE OF CONTENTS

1. Ecosystem overview 3
1.1. MD80 3
1.2. CANdle and CANdle HAT 3
1.3. Safety information 4
1.4. Operating conditions (MD80 and CANdle) 5
1.5. Hardware setup 5
1.6. Before first use 6
1.7. Quick startup guide 6
1.8. Configuring MD80 controller for a new motor 6

2. MD80 11
2.1. General parameters 11
2.2. Connectors pinout 12
2.3. Control modes 14
2.4. Motion controller tuning 17
2.5. Safety limits 18
2.6. FDCAN Watchdog 19
2.7. Measurements 20
2.8. Calibration 20
2.9. Error Codes 22

3. CANdle and CANdle HAT 23
3.1. Principle of operation 23
3.2. USB bus 25
3.3. SPI bus 25
3.4. UART bus 25
3.5. Using CANdle and CANdle HAT 25
3.6. Latency 27

4. Software Pack 29
4.1. CANdle C++ library 29
4.2. MDtool 31
4.3. CANdle ROS/ROS2 nodes 34
4.4. MD80 update tool - MAB CAN Flasher 40
4.5. CANdle update tool - MAB USB Flasher 41

5. Common Issues and FAQ 42
5.1. How to check if my motor is operating properly 42
5.2. Motor not soldered properly 42
5.3. Failed calibration 42
5.4. Lack of FDCAN termination 42
5.5. Different FDCAN speeds between actuators 43
5.6. Too-low torque bandwidth setting 43

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

1. Ecosystem overview
MD80 x CANdle is a system of brushless actuator controllers (MD80) and translator devices (CANdle)

used for interfacing with them. MD80-based actuators can be used in advanced robotic projects like
quadrupedal robots, robotic manipulators, exoskeletons, gimbals, and many more.

1.1. MD80
MD80 is a highly integrated brushless motor controller. It can be interfaced with a great variety of

motors to turn them into advanced servo actuators. MD80 can work with both direct drive (no gearbox) and
geared motors.

MD80 brushless controller

1.2. CANdle and CANdle HAT
CANdle (CAN + dongle) is a translator device between the host controller and the MD80 drivers. It is

possible to interface CANdle with a regular PC over USB bus or CANdle HAT with SBCs (such as Raspberry PI)
over USB, SPI or UART bus.

CANdle Device CANdle HAT device

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

1.3. Safety information

The instructions set out below must be read carefully before the initial commissioning or installation to
raise awareness of potential risks and hazards, and to prevent injury to personnel and/or property damage.

To ensure safety when operating this servo drive, it is mandatory to follow the procedures included in this
manual. The information provided is intended to protect users and their working area when using the device,
as well as other hardware that may be connected to it.

Electric servo drives are dangerous: The following statements should be considered to avoid serious injury
to individuals and/or damage to the equipment:

● Do not touch the power terminals of the device (supply and phases) as they can carry dangerously
high voltages.

● Never connect or disconnect the device while the power supply is ON to prevent danger to
personnel, the formation of electric arcs, or unwanted electrical contacts.

● Disconnect the drive from all power sources before proceeding with any wiring change.
● The surface of the device may exceed 100 ºC during operation and may cause severe burns to direct

touch.
● After turning OFF and disconnecting all power sources from the equipment, wait at least 10 minutes

before touching any parts of the device, as it can remain electrically charged or hot.
● Do not remove the casing of the device.

The following statements should be considered to avoid serious injury to those individuals performing the
procedures and/or damage to the equipment:

● Always comply with the connection conditions and technical specifications. Especially regarding
wire cross-section and grounding.

● Some components become electrically charged during and after the operation.
● The power supply connected to this controller should comply with the parameters specified in this

manual.
● When connecting this drive to an approved power source, do so through a line that is separate from

any possible dangerous voltages, using the necessary insulation in accordance with safety
standards.

● High-performance motion control equipment can move rapidly with very high forces. An
unexpected motion may occur especially during product commissioning. Keep clear of any
operational machinery and never touch them while they are working.

● Do not make any connections to any internal circuitry. Only connections to designated connectors
are allowed.

● All service and maintenance must be performed by qualified personnel.
● Before turning on the drive, check that all safety precautions have been followed, as well as the

installation procedures.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

1.4. Operating conditions (MD80 and CANdle)

Ambient Temperature (Operating) 0°C - 40°C

Ambient Temperature (non-operating) 0°C - 60°C

Maximum Humidity (Operating) up to 95%, non-condensing at 40 ºC

Maximum Humidity (Non-Operating) up to 95%, non-condensing at 60 ºC

Altitude (Operating) -400 m to 2000 m

1.5. Hardware setup
CAN bus topology is a single-line network structure. A typical hardware connection/wiring scheme for
CANdle x MD80 ecosystem is presented in the picture below:

Hint: In case you’d like to read more about the recommended lengths of the bus segments we suggest
the elektormotus guide.

The CAN bus termination is a single Molex connector with an embedded 120Ohm resistor for MD80 versions
older than HW V2.0.For MD80 HW V2.0 and newer, the termination resistor is built-in and can be turned on
and off using software (mdtool config can command) on each controlller. Termination should be always
turned on or attached to the last controller in a string.

CANdle MD80-actuator string (USB bus)

www.mabrobotics.pl
contact@mabrobotics.pl

https://emusbms.com/files/bms/docs/Elektromotus_CAN_bus_recommendations_v0.2_rc3.pdf
mailto:contact@mabrobotics.pl

CANdle HAT MD80-actuator string (SPI/UART bus using Raspberry Pi 4)

1.6. Before first use
Here are some things to look out for while playing with the MD80 x CANdle ecosystem for the first time:

1. Always stay cautious when dealing with actuators. Even though they don't seem like it, they may
severely hurt you when unintentional movement occurs. It’s recommended to fix the actuator to the
workbench.

2. Get accustomed to the safety limits section of this document. While developing your application be
sure to keep the limits low, and only if you are sure you know what you're doing - increase the limits.

3. We recommend using power supply sources that have the ability to work in two quadrants -
meaning they can supply and dissipate some of the energy produced by the motor in case it works
as a generator. Old trafo-based power supplies usually block current coming into the power supply,
causing overvoltage events on the MD80s. The best choice is to use LiPo batteries or at least SMPS
power supplies.

1.7. Quick startup guide
Please see the quick startup guide on our YouTube channel: Md80 x CANdle - Getting Started Tutorial

1.8. Configuring MD80 controller for a new motor
TL;DR this section is only essential when you want to configure a standalone controller with a motor or
reconfigure a driver for a new motor. When purchasing an actuator assembly the actuator will come
preconfigured.

MDtool is used to set up a new motor to work with the MD80 controller. This approach simplifies the
configuration process so that the end user can reconfigure the MD80 driver to work with almost any
brushless motor. Below is a list of steps to configure the controller to work with a motor of your choice.

Warning: steps presented in this section are made on HW 2.0 unit. These steps are universal between
the controller revisions, however, be sure to always check the maximum ratings before you apply
voltage to the controller.

www.mabrobotics.pl
contact@mabrobotics.pl

https://www.youtube.com/watch?v=bIZuhFpFtus&t=1s
mailto:contact@mabrobotics.pl

● First make sure the MD80 controller is able to work with your motor. A vast majority of hobby motors
will be suitable, although too big motors in terms of power and gimbal motors (high resistance
ones) might not work as expected. Be sure to contact us before you proceed with a gimbal or
high-power motor (over 2kW peak power).

● Place the diametrically magnetized magnet on the motor shaft and mount the MD80 controller
firmly centered above the magnet.

The optimal height between the magnet and the encoder IC is 1mm. The magnet and the encoder
must be on the same rotation axis.

MD80 HW2.0 is equipped with seven mounting holes. Please referer to the technical drawing below
to find out the hole dimensions and their placement. The PCB 3D models for both HW2.0, HW1.1,
and HV1.3 can be found here.

www.mabrobotics.pl
contact@mabrobotics.pl

https://www.supermagnete.de/eng/disc-magnets-neodymium/disc-magnet-10mm-5mm_S-10-05-DN
https://drive.google.com/drive/folders/1KnkQKm4l3FcA8TJoDGrV6Yzzjfa2au5a?usp=share_link
mailto:contact@mabrobotics.pl

Warning: always make sure the head of the screw is inside the white hole outline. Otherwise, it may
cause permanent damage to the controller when a short circuit occurs between the head screw and
any of the copper planes. Using M2.5 socket screws is recommended.

● Solder the motor wires to the PCB making sure all the individual motor wires within a single
phase are connected together (in case the motor is wound with more than one wire on each
phase). It is possible to solder the motor from the bottom, however, soldering the wires on the top is
also acceptable. Make sure that the phase wires are connected only to their respective polygons.

Warning: The order of the cables does not matter (does not change the rotation direction) as long as
the order is not changed after the calibration. Each modification in wire order should be followed by
a full motor calibration.

Hint: Sometimes it may be difficult due to the high-temperature enamel on the copper wires. In that
case, try to apply solder at high temperatures using flux until the solder sticks to all wires nicely.

Warning: Failing to complete this step may result in failed calibration or/and excessive cogging
torque.

● Connect the power supply to the controller through the CANdle device as specified in this section.
When powered the controller should blink shortly with a green LED once a second. If the red LED is
fully on there are some errors that should be cleared after the calibration.

Warning: Always make sure that the polarity of the power supply is correct. MD80 controllers do
not have reverse polarity protection so connecting the power supply in reverse polarity will
cause permanent damage to the controller.

● Connect CANdle to the PC using a USB type-C cable.
● If the current version of your devices is older please always upgrade the MD80 first, then update

CANdle, and at the end update the MDtool. For the MDtool installation guide refer to the MDtool
section.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

● Once installed and run the MDtool will create an MDtool directory in ~/.config directory.

Hint: press Ctrl+H to view the hidden folders (starting with a dot)

There, you will find a mdtool.ini file which contains factory settings and should not be modified,
and a mdtool_motors directory, which holds all the motor configuration files you will work with.

Feel free to add a new *.cfg file for your custom motors in there. Use the already existing files as a
reference, especially the AK60-6.cfg which contains some additional comments.

Warning: until the ~/.config/mdtool directory is not empty it will not be replaced on each MDtool run.
However, if you’d like to go back to default *.cfg files please delete the directory and simply run any
MDtool command in the terminal - the appropriate default files will be copied to this directory.

● Check if the MD80 controller can be discovered properly using the mdtool ping all command

● To setup the MD80 controller simply call mdtool setup motor <ID> <*.cfg> where the ID is
the ID that shows up after the mdtool ping command is called, and the *.cfg is one of the files
existing in the mdtool_motors directory (press tab to list available config files). If anything fails
during the process be sure to check your setup and try again.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

● When succeeded, the motor is set up correctly and now’s the time to calibrate it using mdtool

setup calibration <ID>. Please follow the calibration guidelines for more information.
● After the calibration the motor should be ready to use - the best way to find out everything was

completed without errors is to check the MD80 info using the command: mdtool setup info

<ID>. This command lists all the important parameters of the actuator. Errors are shown in red on
the bottom if anything has failed during the process.

Correct after-calibration mdtool setup info command output:

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

2. MD80
2.1. General parameters

MD80 is a brushless servo drive. It may come with a variety of motors and reducers, that can be precisely
matched to the users’ specifications. All MD80 variants are using an advanced motor control algorithm (FOC),
a high-resolution encoder, a high-speed FDCAN communication bus, and a common communication
interface. The servo drives have an integrated high-frequency position PID controller (at 1 kHz), velocity PID
controller (at 5 kHz), and impedance controller (at 40 kHz), as well as a direct torque controller. MD80 also
features a daisy-chaining mechanism, for easy connection of many drives in a single control network.

You can easily check your MD80 version using the mdtool setup info command.

General parameters table for MD80 HW1.1, HV1.3 and older:

Parameter Value

Input Voltage 18 - 28 VDC

Nominal Input Voltage 24 VDC

Max Input Current 10 A

Max Continuous Phase Current 20 A

Max Peak Phase Current (t = 4 s) 40 A

FDCAN Baudrate (adjustable) 1/2/5/8 Mbps

Position PID Controller Execution Frequency 1 kHz

Velocity PID Controller Execution Frequency 5 kHz

Impedance Controller ExecutionFrequency 40 kHz

Torque Control Execution Frequency 40 kHz

Torque Bandwidth (adjustable) 50 Hz - 2.5 kHz

General parameters table for MD80 HW2.0:

Parameter Value

Input Voltage 10 - 48 VDC

Nominal Input Voltage 24 VDC

Max Input Current 10 A

Max Continuous Phase Current 20 A

Max Peak Phase Current (t = 2 s) 80 A

FDCAN Baudrate (adjustable) 1/2/5/8 Mbps

Built-in software-controlled termination resistor yes

Position PID Controller Execution Frequency 1 kHz

Velocity PID Controller Execution Frequency 5 kHz

Impedance Controller ExecutionFrequency 40 kHz

Torque Control Execution Frequency 40 kHz

Torque Bandwidth (adjustable) 50 Hz - 2.5 kHz

External encoder connector (SPI, RS422) yes

External 5V power supply max current 150mA

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

2.2. Connectors pinout
The connectors used in the system on the CANFD side are MOLEX Micro-Fit series 3.0. Both connectors are
connected in parallel for easy daisy-chaining. The connector pinout is presented below:

The colors of the corresponding wires in the Molex socket, as supplied by MAB (looking from the side of the
wires):

All MD80 versions have the capability to measure the MOSFET and motor temperature. This is to ensure the
safe operation of the driver and motor. The motor shutdown temperature is configurable up to 140*C max
with a hysteresis of 20*C. The driver shutdown temperature is fixed at 100*C with a hysteresis of 20*C.

The connectors in the case of the HW1.1 and HV1.3 versions are located as follows:

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

In the case of the MD80 HW V2.0 the MOSFET thermistor is built-in directly under the power stage and only
the motor thermistor connector is available:

Note: We recommend using NTCMHP100K thermistors, as MD80s are using a lookup table
compatible with these sensors. Using other thermistors may result in imprecise temperature
readout.

Since version HW V2.0 the PCB is equipped with an auxiliary connector for communication with external
encoders such as RLS ring encoders. The connector pinout is available below:

External connector pin functions (RS422 / SPI) are selectable using resistors on the bottom PCB side. We are
able to integrate custom functions such as GPIOs for external sensors and indicators. For more information
please contact us: contact@mabrobotics.pl

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl
mailto:contact@mabrobotics.pl

2.3. Control modes

TL;DR: MD80 x CANdle - motion modes

To control the motor shaft with the user’s command MD80 is equipped with multiple control
loops. All controllers are based on a regular PID controller design with an anti-windup block. The saturator
(anti-windup) is an additional module that acts as a limiter to the ‘I’ part of the controller, as in many
systems, the error integration may grow to very large numbers, completely overwhelming ‘P’ and ‘D’ parts of
the controller.

Velocity PID
Velocity PID controller calculates velocity error based on target velocity (set by user) and estimated

velocity read from the encoder. Its output is a torque command for the internal current/torque controller.
The parameters of the controller are:

● Velocity Target (in [rad/s])
● kP (proportional gain)
● kI (integral gain)
● kD (derivative gain)
● I windup (maximal output of an integral part in[Nm])
● Max output (in [Nm])

www.mabrobotics.pl
contact@mabrobotics.pl

https://www.youtube.com/watch?v=XnD8sG22zro&t=2s
mailto:contact@mabrobotics.pl

Position PID
Position PID mode is the most common controller mode used in industrial servo applications. In MD80, it is
implemented as a cascaded PID controller. This means that the controller is working in two stages, firstly
the position error is calculated, and it is then passed to the Position PID, which outputs the target velocity.
This value is then passed as an input to the Velocity PID controller, which outputs commanded torque. This
mode uses both Position PID and Velocity PID and thus needs the following parameters:
For Position PID

● Position Target (in [rad])
● kP (proportional gain)
● kI (integral gain)
● kD (derivative gain)
● I windup (maximal output of an integral part in [rad/s])
● Max output (in [rad/s])

For Velocity PID:
● Velocity Target (in [rad/s])
● kP (proportional gain)
● kI (integral gain)
● kD (derivative gain)
● I windup (maximal output of an integral part in[Nm])
● Max output (in [Nm])

To properly tune the controller, it is recommended to first tune the velocity controller (in Velocity PID mode),
and then the Position PID. The controller can be described with a diagram:

Impedance PD
Impedance Control mode is a popular choice for mobile or legged robots, as well as for any compliant
mechanism. The main idea behind it is to mimic the behavior of a torsional spring with variable stiffness and
damping. The parameters of the controller are:

● Position Target
● Velocity Target
● kP (position gain)

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

● kD (velocity gain)
● Torque Feed Forward (Torque FF)

The torque output is proportional to the position error and velocity error and additionally supplemented
with a torque command from the user. Here are some of the most common applications for this control
mode:

● Spring-damper mechanism - when Velocity Target is set to 0, Impedance Controllers kP gain acts
as the virtual spring stiffness and kD as its damping coefficient.
Example use case: a variable suspension for a wheeled robot, where suspension stiffness can be
regulated by kP, damping by kD, and height (clearance) by changing the Target Position;

● High-frequency torque controller, where its Targets and Gains can act as stabilizing agents to the
torque command.
Example use case: In legged robots, force control can be achieved by advanced control algorithms,
which usually operate at rates below 100 Hz. It is usually enough to stabilize the robot but too slow
to avoid vibrations. Knowing desired robot's joint positions, velocities, and torques, drives can be
set to produce the proper torque and hold the position/velocity with small gains. This would
compensate for any high-frequency oscillations (vibrations) that may occur, as the Impedance
controller works at 40kHz (much faster than <100 Hz).

● Raw torque controller - when kP and kD are set to zero, the torque_ff command is equal to the
output controller torque.

The impedance controller is quite simple and works according to the schematic below:

Controller implementation
Controller implementation can be useful for simulating the actuators in virtual environments. Please find the PID
and impedance C/C++ language implementations below:

float mab_controller_performPid(PID_controller *c, float act_value)

{

c->error_last = c->error;

c->error = c->target - act_value;

c->integrator += c->error*c->dt;

c->integrator = mab_commons_range(c->integrator, -c->integrator_windup, c->integrator_windup);

c->de = (c->error - c->error_last)/c->dt;

c->output = mab_commons_range((c->kp * c->error + c->ki * c->integrator + c->kd * c->de) ,

-c->output_max, c->output_max);

return c->output;

}

float mab_controller_performImpedanceController(Impedance_controller *c, float position, float velocity)

{

c->output = c->setTorque + c->kp * (c->positionTarget - position) + c->kd * (c->velocityTarget -

velocity);

c->output = mab_commons_range(c->output, -c->outputMax, c->outputMax);

return c->output;

}

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

2.4. Motion controller tuning
TL;DR: The best way to get started with tuning is to copy the default gains and tweak them. You can
treat this section as our recommendation for tuning the controllers, but online articles can be useful as
well (link)

The first step to correctly set up the gains is to start with our default gains. There are three sets of default
gains that are set on each motor power up and thus they allow for restoring the actuator to a default state in
case some gains were set incorrectly by the user. These gains are also a great starting point for user
modifications when the actuator has to be used in a specific application requiring high positioning accuracy
or very dynamic movements.

Note: Default gains are set to work with CANdle examples. This way they can be assumed to be
universal but it does not have to always be the case.

Note: When something does go wrong during the tuning process just power-cycle the actuator - the
default gains will be restored.

Warning: Always keep your safety limits low when experimenting with gains. Gains not suitable for
your system may cause oscillations and unstable operation of the MD80-based actuators.

Velocity PID
The velocity PID controller can be used to command different velocity profiles to the motor. This mode uses
a regular PID controller architecture and has four user-defined parameters: kP, kI, kD, and windup. Since
velocity readout is somewhat noisy, it is recommended to keep the kP value as low as possible and play with
kI gain. It is necessary to find the sweet spot that makes the actuator response resistant to disturbances, but
also not too noisy (too high kP gain may introduce oscillations). Usually, the kI gain is set to a higher value,
however, do not treat it as a rule of thumb. Setting the kI gain to a too high value can cause an overshoot
when the target velocity is changed rapidly. The kD gain may be used to partially overcome this issue. The
windup parameter is used to limit the integral action which could potentially rise to high values when
velocity error is present for longer periods.

Position PID
Position PID is the mode used when high positioning accuracy is required. Usually, no compliance is
assumed in this mode, so the actuator will try to hold the read position as close to the commanded value as
possible. One must be aware that position mode is actually made out of two PID controllers - the inner loop
which is the velocity PID discussed earlier and the position PID working on top of the velocity loop. This is
why it is essential to first take care of the velocity controller, considering the highest velocity that may occur
in the system between the corresponding position commands in time. When both high and very low
velocities are needed in a system it might be necessary to change the velocity PID gains on the fly, depending
on the commanded velocity in each trajectory segment. When the velocity PID is ready the next step is to
adjust the position PID gains so that a required actuator response is achieved. Since position readout is
much less noisy compared to velocity it is recommended to first pick a kP value that will allow the motor to
get to a setpoint position. In the next step kI and kD can be varied, together with the kI limiting factor
(windup). One should remember the position PID output limit which is called MaxVelocity. This is a
parameter that will limit the maximum commanded velocity and thus may limit actuator performance. It

www.mabrobotics.pl
contact@mabrobotics.pl

https://2d033567-d193-42c8-9e42-4931131b206f.usrfiles.com/ugd/2d0335_4f52c3bdab9e4b1cbd2cec68e48b7e14.pdf
https://www.motioncontroltips.com/how-are-servo-system-velocity-control-loops-tuned/
https://2d033567-d193-42c8-9e42-4931131b206f.usrfiles.com/ugd/2d0335_4f52c3bdab9e4b1cbd2cec68e48b7e14.pdf
mailto:contact@mabrobotics.pl

should be set to a value that is close to the actual trajectory segment maximum achievable velocity. Making
it too high when very low velocities are required may result in oscillations.

Impedance PD
The impedance mode is relatively straightforward to get started with since there are only two main
parameters that affect the response of the actuator. The easiest way is to think of a motor as a combination
of a torsional spring with a damper, where kP is the spring constant, and kD is the damping coefficient. The
higher the kP gain the more accurate positioning is achieved, but also, when it’s set too high oscillations may
be introduced. This is why a damping coefficient should be introduced. It makes the response “smooth”,
usually less aggressive, and minimizes overshoot. It can be thought of as placing the motor in a viscous fluid
where the viscosity of the fluid is the damping coefficient. This mode, however, can introduce steady-state
error due to the lack of integral term. If high positioning accuracy is needed be sure to read about position
PID mode.

Current PI
Current/torque PI is the lowest-level controller. Its gains are not directly user-configurable, however, they can
be modified using the bandwidth parameter. Please see the calibration section for more insight on the topic.

2.5. Safety limits
There are safety limits imposed on the maximum phase current as well as maximum torque and velocity to
ensure the safe operation of the drive. Safety limits are there to protect the controller and the motor from
overheating and the surrounding environment from too-powerful actuator movements.

Warning: setting the max current limit to above the maximum continuous current may damage the
MD80 controller if the maximum torque is commanded for a prolonged period.

Let’s start with the max current limit.

This setting limits the maximum current (and thus torque) the motor can output. It is the last
user-configurable limit in the control scheme. The maximum current is set using the mdtool config

current command, and by default, it is usually set to 10A. This setting can be saved in the non-volatile
memory so that it is always loaded on the actuator power-up. To estimate the maximum current setting for a
particular motor, you should use the following formula:

where

www.mabrobotics.pl
contact@mabrobotics.pl

https://www.codecogs.com/eqnedit.php?latex=I%20%5BA%5D%20%3D%20%5Cfrac%7B%5Ctau%20%5BNm%5D%20%5Cfrac%7B1%7D%7BG_r%7D%7D%7BK_t%5B%5Cfrac%7BNm%7D%7BA%7D%5D%7D#0
mailto:contact@mabrobotics.pl

- calculated current in Amps
desired maximum torque

gear ratio

motor’s torque constant

for example let’s calculate the max current limit for AK80-9 motor, for a 2Nm max torque:

t

Note: usually this limit should be set to the highest peak torque that is allowed in the system so that it
doesn't limit the actuator performance.

Now, to put this value into the MD80 please refer to mdtool config current command. Don’t forget to
save it with the mdtool config save command.

The other limits are the max torque and max velocity parameters, which are set from the user script level.

These parameters allow restricting the output of high-level controllers - the position PID, velocity PID, and
impedance PD controllers. These limits are applied before the max current limit, so even when set high they
will not lead to a hazardous situation until the max current is fixed at a safe level. The max velocity limit is
respected only in position PID mode, whereas the max torque limit is respected in all motion modes. Check
out the controller tuning section for more information.

Note: if the torque bandwidth is set to a low value it is possible to read torque values that are above
limits when external torque is applied (for example during impacts). This is only true in transition
states - when the load is constant the limits will work as expected. This is because with low torque
bandwidth the internal torque PI controllers may be too slow to compensate for rapidly changing

torque setpoint when hitting the torque/current limit. If you care about accurate torque readout be sure to play
with the torque bandwidth parameter and possibly increase it from the default level.

2.6. FDCAN Watchdog
MD80 features an FDCAN Watchdog Timer. This timer will shut down the drive stage when no FDCAN
frame has been received in a specified time. This is to protect the drive and its surroundings in an event
of loss of communications, for example by physical damage to the wiring. By default, the watchdog is

www.mabrobotics.pl
contact@mabrobotics.pl

https://www.codecogs.com/eqnedit.php?latex=I%5BA%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=G_r#0
https://www.codecogs.com/eqnedit.php?latex=K_t#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau%20%3D%202%20Nm#0
https://www.codecogs.com/eqnedit.php?latex=G_r%20%3D%209%3A1%20-%3E%209#0
https://www.codecogs.com/eqnedit.php?latex=K_t%20%3D%200.091%20Nm%2FA#0
https://www.codecogs.com/eqnedit.php?latex=I%20%5BA%5D%20%3D%20%5Cfrac%7B2%5BNm%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B9%7D%7D%7B0.091%5B%5Cfrac%7BNm%7D%7BA%7D%5D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20I%20%5BA%5D%20%5Capprox%20%202.44A%20#0
mailto:contact@mabrobotics.pl

set to 250ms. This time can be set to any value in the range of 1 to 2000ms using mdtool config can

command. When the watchdog is set to 0, it will disable the timer, however, this can lead to dangerous
situations, and it is not a recommended way of operating MD80.

Warning: we do not recommend disabling the CAN watchdog timer.

2.7. Measurements
MD80 is equipped with sensors that allow for measuring the motor position, velocity, and torque. Whether
the motor has an integrated gearbox or not, the position, velocity, and torque are in the output shaft
reference frame. This means that changing the position from 0.0 to 2𝞹 radians, will result in approximately
one rotation of the motor for direct-drive (gearless) servos and approximately one rotation of the gearbox
output shaft for geared motors.

Position
To measure the position of the rotor an MD80 uses an internal magnetic encoder. The resolution of the
encoder is 14 bits (16384 counts per rotation). The drive aggregates all the measurements to provide
multi-rotation positional feedback. The reference position (0.0 rad) is set by the user and stored in the
non-volatile memory. Please see mdtool config zero command for more information on how to set the
desired zero position.

Note: When using geared actuators with gear ratios above 1:1 it is not possible to determine the
position after startup unambiguously, since the motor completes multiple rotations per single rotation
of the output shaft. For example, for a 2:1 gearbox, there are two sections within a single output shaft
rotation where the motor shaft is in the same position. Unless the motor is placed in the wrong

“section” during startup the absolute encoder functionality will work.

Velocity
The velocity is estimated by measuring position change in time, at a frequency of 40kHz. The measurements
are then filtered using a low-pass filter with a cut-off frequency of 5 kHz since the position differentiation
method introduces noise.

Torque
Actuator torque is estimated by measuring motor phase currents. This method can be used on low-gear ratio
actuators (preferably below 9:1), that are easily back-drivable, to get an estimate of the torque applied by the
motor. In applications with higher gear ratios, the torque readout might be less accurate due to excessive
friction in the gearbox.

2.8. Calibration
Calibration should be performed when the MD80 controller is first mounted to the motor or when anything
changes in the motor-controller assembly. It has three main stages during which specific parameters of the
setup are measured and saved.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

Note: the calibration has to be performed on a motor that is free to rotate with no load attached to its
output shaft. If the calibration fails, you will see errors when executing the mdtool setup info command.
If the failure is essential to the motor’s operation the MD80 will remain disabled till the next calibration
attempt.

Pole pairs detection
In the first stage the motor will execute one full motor rotor rotation in order to check if the pole pair count is
correctly configured. If the detected number of pole pairs is not consistent with the number that was typed in
the *.cfg file during motor setup the calibration will fail and an error ERROR_POLE_PAIR_DET will be shown
until the next calibration attempt. If you are unsure about the number of pole pairs (you can check it by
counting magnets and dividing it by 2) just place zero in the *.cfg file. Then the pole pairs will be
automatically detected.

Encoder eccentricity
Encoder eccentricity is the second measurement that takes place. During this part, the motor performs a
slow single rotation in both directions to assess the amount of error due to non-axial encoder placement.

Motor resistance and inductance
Motor parameters - resistance and inductance are measured in order to calculate the correct current PI
controller gains to achieve a certain torque bandwidth (please see the section below). The parameters are
measured in the DQ reference frame meaning the resultant resistance and inductance values have to be
transformed from either line-to-line quantities or phase quantities.

Torque bandwidth
Even though the torque command on MD80 controllers seems to be applied instantaneously, in reality, it’s
not the case. As in every system, there’s a response to the command which depends on the system itself and
the controller gains. A parameter called bandwidth was introduced to describe how fast the output of a
system reacts to the changing input. Calibrating the motor for a certain torque bandwidth requires
measuring motor parameters. This happens in the last calibration stage and manifests as an audible sound
(beep).

The torque bandwidth is set to 200 Hz by default. It can be set to anywhere from 50 Hz to 2.5 kHz,
however it is important to note that higher torque bandwidth causes a higher audible noise level. Please see
the mdtool setup calibration command for more details on calibrating the actuators.

When the system that you’re designing is a highly dynamic one, you want the torque bandwidth to
be higher than the default setting of 50 Hz. Start by calibrating the drives for 1 kHz torque bandwidth, and if
you see this is still not enough you can increase it further.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

2.9. Error Codes
When an abnormal situation takes place the controller sets an error bit indicating a particular error. The
table below lists all available error codes and their descriptions.

Error code Description
ERROR_BRIDGE_OCP Overcurrent was detected by the MOSFET driver

ERROR_BRIDGE_FAULT A general fault of the MOSFET driver
ERROR_OUT_ENCODER_E Output encoder general error

ERROR_OUT_ENCODER_COM_E Output encoder communication error
ERROR_PARAM_IDENT Error during calibration of the drive, during the resistance and

inductance measurements
ERROR_MOTOR_SETUP Error indicating problems with motor setup
ERROR_POLE_PAIR_DET Error indicating problems with automatic pole pair detection in the

first stage of the calibration process
ERROR_UNDERVOLTAGE Undervoltage detected
ERROR_OVERVOLTAGE Overvoltage detected
ERROR_MOTOR_TEMP Motor overheat event
ERROR_MOSFET_TEMP MOSFET overheat event
ERROR_CALIBRATION A general error during calibration

ERROR_OCD Overcurrent detected
ERROR_CAN_WD CAN watchdog triggered

Note: ERROR_CAN_WD indicates the CAN communication was ended by the CAN watchdog, not the
user. This is not a critical error, however, it indicates there was a non-clean exit from the control
program (no candle.end() was called) and it should be investigated.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

3. CANdle and CANdle HAT
CANdle is a translator device used to communicate between MD80 controllers and the host device. Currently,
there are two CANdle versions - CANdle and CANdle HAT.

The first one is a simple version that uses only the USB bus to communicate with the host, whereas the latter
can communicate using USB, SPI, and UART bus, and is easy to integrate with SBCs such as Raspberry PI. The
communication with MD80 controllers is performed using FDCAN bus.

To achieve the fastest communication speeds you should aim for the SPI bus. For more details on the latency
topic please check out the latency section.

Warning: currently CANdle supports only Linux operating systems.

3.1. Principle of operation
CANdle can work in two different modes: CONFIG and UPDATE. When in CONFIG mode, it works as a
traditional translator device between two selected buses - USB/SPI/UART and FDCAN. This mode is used to
set up the drives and prepare them for a low-latency operation in the UPDATE mode. When the configuration
is done the user calls candle.begin() which starts a low-latency continuous connection with the MD80
controllers. In the UPDATE mode, you are not allowed to call the config functions. To make them easier to
recognize, each config function starts with a config keyword. The user exits the UPDATE mode using
candle.end() method.

When in Update mode the communication speed is dictated by the number of drives attached to the bus.
Please see the latency section for maximum communication speeds.

Generally, a program using CANdle should follow the workflow below:

www.mabrobotics.pl
contact@mabrobotics.pl

https://docs.google.com/document/d/1Poi_9Bkg_k-m_-vnVxpM2lgqI9L_sbGookBTi5UIgT8/edit#heading=h.s7dwbn9dvw64
mailto:contact@mabrobotics.pl

Creating a Candle object creates a class that will hold all the data and provides an API for the user. During the
creation of the class, the software will attach itself to the ttyACMx port used by the CANdle, or SPI/UART bus if
CANdle HAT is considered. It will also perform a reset operation on the device and set up basic parameters.
This ensures that the device is in the known state at the start of the program. When an object is created, the
CANdle is in the CONFIG state.

Now the configuration of the drives can be done. As a rule of thumb, all class methods starting with the word
‘config’ can be used here. They do not require adding MD80 to the update list, just require an ID of the drive
to talk to. This is a good place to set current limits, change FDCAN parameters, or save data to flash.

Note: This is also a good place to call Candle::ping(), this will trigger the CANdle device to send an
FDCAN frame to all valid FDCAN IDs. The method will return a vector of all IDs that have responded.
This can be used to check if all the drives have power and if all communication is set up correctly.

The next step is adding MD80s to the update list. To do so, use Candle::addMd80() method, with an FDCAN ID
(drive ID) as an argument. This will trigger CANdle to quickly check if the drive is available on the bus at the
ID, and if it is, the CANdle device will add the drive to its internal list and send an acknowledgment to the
CANdle lib. If the drive is successfully added the addMd80() method will add this particular MD80 to its
internal vector for future use and return true.

When all drives have been added, the drives should be ready to move. This can be done with methods
starting with the “control(...)” keyword. Firstly the control mode should be set, then the zero position set (if
desired), and finally the drives can be enabled by using Candle::controlMd80Enable() method.

Note: sending an ENABLE frame will start the CAN Watchdog Timer. If no commands follow, the drive
will shut itself down.

When all drives are enabled, Candle::begin() can be called. This will set the CANdle (both device and library)
to UPDATE state. The device will immediately start sending command frames to the MD80s. From now on the
library will no longer accept config* methods. Right now it is up to the user to decide what to do. After the
first 10 milliseconds, the whole MD80 vector will be updated with the most recent data from MD80s and the
control code can be executed to start moving the drives.
Individual drives can be accessed via Candle::md80s vector. The vector holds instances of ‘Md80’ class, with
methods giving access to every md80 control mode. Latest data from md80’s responses can be accessed with
Md80::getPosition(), Md80::getVelocity(), Md80::getTorque(), Md80::getErrorVector().

Note: As the communication is done in the background, it is up to the user to take care of the software
timing here. If you for example set a position command, but don’t put any delay after it, the program
will get to an end, disabling the communication and the servo drives, without you seeing any
movement!

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

When the control code finishes, the Candle::end() method should be called. This will ensure a ‘clean exit’
meaning a properly closed communication on both USB and FDCAN side. Candle::begin() can be called later
to resume communication if needed.

3.2. USB bus
The USB bus is the most common one, used in both CANdle and CANdle HAT. This is the slowest
communication bus when it comes to performance, due to the non-realtime nature of the host, however, it's
the easiest one to set up and test. Since the USB communication interface is not well-suited for real-time
applications due to random host delays, the MD80 baudrate is not the limiting factor - you can set it to
1/2/5/8 Mbps and there will be no difference in the update rate.

Note: We highly recommend using the USB bus set up for the first run.

3.3. SPI bus
The SPI bus is only available on CANdle HAT devices. It’s the fastest possible bus that can be used to
communicate with the MD80 controllers using CANdle HAT. Together with the RT-PATCHED kernel of the
system, you will get the best performance.

Note: CANdle HAT in SPI mode works with all FDCAN speeds, however, we advise setting it to 8M for the
best performance.

Note: Since it needs some additional configuration on Single Board Computers such as Raspberry PI,
we recommend starting playing with it after getting accustomed to the ecosystem using the USB bus.

3.4. UART bus
The UART bus is only available on CANdle HAT devices. Its speed on Raspberry PI microcomputers with
CANdle HAT is comparable to that of USB, so it should be only used as an emergency bus when the SPI and
USB ports are not available.

Note: CANdle HAT in UART mode works with all FDCAN speeds, however, we advise setting it to 8M for
the best performance.

3.5. Using CANdle and CANdle HAT

PC (USB bus)
The library does not require any additional software to be functional, It can work as-is. However, to make full
use of it we recommend using setserial package (for increasing maximal access frequency to the serial port
used for communication with CANdle). To install it please call:

sudo apt install setserial

To enable access to CANdle from userspace, the user should be added to dialout group by calling:

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

sudo usermod -a -G dialout <user> # where <user> is current username

If this is not possible, devices access level can be granted by:

sudo chmod 777 /dev/ttyACMx # where x is CANdle port number, usually 0

If this is also not possible, programs that use CANdle (including examples), can be launched with sudo.

SBC (USB/SPI/UART)
Running CANdle or CANdle HAT using a USB bus on SBC is identical to running it on a Linux PC (section
above). However, when using SPI or UART a few other requirements have to be met. We will guide you
through the setup process on Raspberry PI 4.

Note: when using SBCs other than Raspberry the process may vary and should be performed
according to the board manual or with the help of the manufacturer.

SPI
To enable the SPI bus you should call:

sudo nano /boot/config.txt

uncomment the following line, save the file

dtparam=spi=on

and reboot:

sudo reboot

to make sure SPI is enabled call:

ls /dev | grep spi

you should see an output similar to this:

spidev0.0

spidev0.1

UART
To enable the UART bus you should call:

sudo nano /boot/config.txt

and add the following lines on the end of the file

enable_uart=1

dtoverlay=disable-bt

after that open the cmdline.txt

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

sudo nano /boot/cmdline.txt

and remove the part:

console=serial0,115200

and reboot:

sudo reboot

3.6. Latency
The latency was measured in a real scenario to get the most accurate results. A special flag was embedded
into the MD80 command which the MD80 should return in the next response it sends. This way the whole
route from the host, through CANdle, MD80 and back was profiled in terms of the delay. The setup was tested
on a PC using only USB bus (PC Ideapad Gaming 3 AMD Ryzen 7 4800H) and Raspberry PI 3b+ with RT PATCH
(4.19.71-rt24-v7+) on USB, SPI, and UART bus.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

Each mode was tested with a different number of actuators on the bus and the scheduler priority was set to
high. As can be seen, the SPI bus gives the best results, reaching 2.5 kHz of communication speed with a
single MD80 controller. The USB bus is slower, especially on the Raspberry PI, but is still sufficient for
advanced control scenarios. The UART bus is the slowest, but it offers the lowest jitter. The division between
priority normal and priority high was accomplished using a script that changes the scheduler priority of the
running test program:

CONTROL_PID=$(sudo pidof -s <NAME_OF_YOUR_EXECUTABLE>)

CONTROL_PRIORITY=99

sudo chrt -f -p ${CONTROL_PRIORITY} ${CONTROL_PID}

This script changes the priority only when the program is already running (otherwise it will not work). It can
be used when your program cannot be run directly with sudo - for example, it is useful when dealing with
ROS nodes.

You can also embed the following snippet in your C++ code if you can run it with sudo directly:

struct sched_param sp;

memset(&sp, 0, sizeof(sp));

sp.sched_priority = 99;

sched_setscheduler(0, SCHED_FIFO, &sp);

During testing on Raspberry PI SBCs we have found out that isolating a CPU core (isolcpus) specifically for
the CANdle process did not result in a performance increase - rather made it less performant.

Note: when dealing with the MD80x CANdle ecosystem for the first time we advise using the USB bus
that is available on both CANdle and CANdle HAT devices.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

4. Software Pack
The MD80 x CANdle software pack consists of a few modules. All of them are based on the main CANdle C++
library which takes care of the low-level communication and provides API for high-level software.

4.1. CANdle C++ library
CANdle C++ library is the base module of software that all other modules are based on. It takes care of
low-level communication between the host and the MD80 controllers. Using the CANdle C++ library directly
is the best option to reach the full performance of the drives when it comes to communication frequency
between the host and MD80 controllers.

Quick start
The quick startup guide includes cloning the repo, building and running the examples. First, you should
clone the candle repo from the MAB Robotics GitHub page to your local machine. Then, make sure you're in
the main directory candle/ and run the following commands:

mkdir build
cd build
cmake ..
make

starting from the top one these commands: create a build directory, go into the build directory, generate
makefiles using CMake and compile the source code using make. After executing these commands you
should be able to see the compiled examples in the candle/build/ directory. To run one of them use the
following command:

./exampleX

where X is the number of the example.

Building as a static lib
Candle C++ library can be built as a static or shared object library. In the quick startup guide, we used the
default settings, thus the library was compiled to a shared object file. In case you’d like to build it for a static
lib you should pass additional arguments to the cmake .. command:

cmake .. -DCANDLE_BUILD_STATIC=TRUE

After executing this command you should be able to see the following CMake output:

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

In case you’d like to go back to shared lib just call:

cmake .. -DCANDLE_BUILD_STATIC=FALSE

or delete the build directory contents and call cmake .. again (the default library type is shared). This is what
the cmake output looks like when reconfiguring for shared lib:

CANdle Python library
CANdle Python library is a translated version of the C++ library using pybind11. The package can be found on
PyPi: https://pypi.org/project/pyCandleMAB/ and installed using pip:

sudo python3 -m pip install pyCandleMAB

It can be used to quickly start playing with the actuators, without the need to build the C++ software pack.
Example usage of Python examples is shown in the getting started guide. To achieve the best performance in
low latency systems we advise using the C++ libraries directly.

Note: We distribute the binaries as well as sources - in case your platform is not recognized with the
available binaries pip will try to build and install the library from the source.

Warning: Currently only C++ library allows reading and modifying MD80 registers from the script level.

www.mabrobotics.pl
contact@mabrobotics.pl

https://pypi.org/project/pyCandleMAB/
mailto:contact@mabrobotics.pl

4.2. MDtool
MDtool is a console application for configuring and performing basic diagnostics on MD80 drives via CANdle.
The application is available as a standalone executable and as a .deb package. The program is designed as a
complementary tool for APIs, reducing the overhead when setting up the drives for the first time or
reconfiguring them. It uses the CANdle C++ library on its backend.

Installation
The easiest way to install the MDtool is to select the appropriate *.deb package from the MDtool GitHub repo
releases page (compliant with your system’s architecture). Before installing please uninstall any older
versions using sudo apt remove. To install after the download simply call:

sudo apt install ./mdtool_xx-x_xx.deb

Be sure to call ./mdtool bus <SPI/UART/USB> to configure MDtool for the desired communication bus before
first use if youre using CANdle HAT and SPI or UART bus.

Note: for the command prompt to work after the installation you have to restart the terminal window.

Commands
mdtool bus <bus> <device>
MDtool is able to work with CANdle and CANdle HAT. This is why before the first use it has to be configured
for a particular communication bus. Use the bus command to set it to USB, SPI, or UART, based on which
device you own. The default bus setting is USB. You don't have to repeat this setting unless you want to
change the current communication bus. The device parameter is optional and can be used in case of the
UART and SPI bus, if the default device (/dev/spidev0.0 in case of SPI or /dev/ttyAMA0 in case of UART) is not
suitable for your application.

mdtool ping <baud>
MDtool is able to discover the drives that are connected to the CAN bus. You can ping the drives at a specific
speed (1M/2M/5M/8M) or just use the ‘all’ keyword for pinging all speeds in one go.

Note: CANdle does not support working with drives configured with different CAN speeds on the same
CAN bus – please make sure when “mdtool ping all” command is executed, all discovered drives lie in
a single speed category.

mdtool config zero <ID>
This command sets the current motor position to zero - from the moment this command is called all encoder
measurements are referenced from the current position.

Note: this setting has to be saved to be preserved after power down! Please see the config save <ID>
command.

mdtool config can <current ID> <new ID> <baud> <watchdog period [ms]> <termination>
This command is used to change MD80’s parameters such as CAN ID, CAN speed, and CAN watchdog.

● CAN IDs should be in range <10:2000>
● Baud should be one of the available speeds (1M/2M/5M/8M)

www.mabrobotics.pl
contact@mabrobotics.pl

https://github.com/mabrobotics/mdtool/releases
https://github.com/mabrobotics/mdtool/releases
mailto:contact@mabrobotics.pl

● Watchdog period should be in range <1:2000> ms, 0 disables the watchdog. For more information on
CAN watchdog please refer to section FDCAN Watchdog Timer.

● termination should be either 1 to turn the termination on or 0 to turn the termination off.

Warning: software-controlled termination is available since version HW V2.0. It is an optional setting -
when not typed in the command this setting will default to zero (off).

Note: this setting has to be saved to be preserved after power down! Please see the mdtool config save
<ID> command.

mdtool config current <ID> <current>
This command is used to set the maximum phase current that is allowed to flow through the motor when
high torques are commanded. By default, the maximum current is set to a rather low value that will not lead
to motor or driver burnout. However, this also limits the motor's maximum torque capabilities. Using the
config current command one can increase the maximum current. The absolute maximum value is 40 A.

Warning: the guarantee does not include burnout actions due to too high current settings. For max
continuous driver current please refer to the general parameters and safety limits sections.

Note: this setting has to be saved to be preserved after power down! Please see the config save <ID>
command.

mdtool config bandwidth <ID> <torque bandwidth in Hz>
This command can be used to change the torque bandwidth without recalibrating the actuator. For more
information on the torque bandwidth please see the section about calibration.

Note: this setting has to be saved to be preserved after power down! Please see the config save <ID>
command.

mdtool config save command <ID>
For the config commands to take action after the next power cycle a save command has to be executed. This
command saves the current drive’s settings to the non-volatile FLASH memory.

mdtool setup calibration <ID>
The calibration is always performed in the factory, however, if for some reason you’d like to rerun it the
calibration command can be used to do just that. During calibration, the drive has to be able to rotate freely
and the power supply should be able to deliver at least 1A of current. For more detail on the calibration
process please refer to the calibration section.

mdtool setup motor <ID> <*.cfg>
This command is used to write a new motor config. For more information please see the section Configuring
MD80 controller for a new motor.

mdtool setup info <ID>
This command is used to read the motor internal parameters. An example command output might look like
this:

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

Reading the errors is the easiest way of debugging possible problems with the drive. For errors description
please visit the Error Codes section.

mdtool blink command <ID>
This command is mostly used to find an MD80 drive on a long CAN bus using its ID – the command makes the
drive flash its onboard LEDs for easy identification.

mdtool test move command <ID> <position>
This command is used to test the actuator movement in impedance mode. It helps to assess if the calibration
was successful and if there are no issues visible to the naked eye. The position argument is always the
amount of position for the motor to be moved from the current position.

mdtool test latency command <baudrate>
This command is used to test the PC<>CANdle communication speed which greatly affects the PC<>MD80
communication speed. The higher the measured frequency the better.

mdtool encoder command <ID>
This command is useful when one wants to measure the position of the actuator in the current setup
(without writing a custom script). After the command is executed the screen shows the current position of
the actuator’s shaft and it does so until you press Ctrl + C.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

4.3. CANdle ROS/ROS2 nodes

TL;DR: MD80 x CANdle - ROS/ROS2 startup guide

While C++ API is the most flexible way of interfacing with CANdle/MD80, ROS/ROS2 APIs are also available.
These have been designed as standalone C++ nodes that use the CANdle library on the backend. The nodes
are designed to be used with already configured drives, thus functions such as setting FDCAN parameters are
unavailable via ROS/2 API. We recommend configuring all drives first using MDtool or C++/Python API.

Nodes use ROS/2 services to perform initialization and enable/disable the drives.
The initialization services available are:

/add_md80s
/zero_md80s
/set_mode_md80s

There are also two additional services for enabling/disabling the drives:

/enable_md80s
/disable_md80s

Once the drives are enabled via `enable_md80s` service, the nodes will ignore all calls to services other
than `disable_md80s`.
When enabled, communication switches from service-based to topic-based. The nodes will publish to the
topic:

/md80/joint_states

And will subscribe to topics:

/md80/motion_command
/md80/impedance_command
/md80/velocity_pid_command
/md80/position_pid_command

Quick startup guide - ROS
Let’s run a simple example of the candle ROS node. In order to run the node, clone it into your local ROS
workspace in the src folder. After that, build it with 'catkin' and run using the 'rosrun' command. Be sure to
source your workspace with source devel/setup.sh prior to running the package, and in each new terminal
window you're going to send commands related to the node.

First, start the roscore with the roscore command. Then run the node with arguments that fit your MD80 x
CANdle setup. The general syntax is:

rosrun candle_ros candle_ros_node <BUS> <FDCAN baud>

for more information on how to run the node you can call:

rosrun candle_ros candle_ros_node --help

Example output from the terminal after launching the node:

www.mabrobotics.pl
contact@mabrobotics.pl

https://www.youtube.com/watch?v=6sLQNaJKuJY&t=3s
mailto:contact@mabrobotics.pl

In this example, we will be working with USB bus and 8M FDCAN baudrate.

Adding drives
Firstly, the node should be informed which drives should be present on the FDCAN bus. This can be done via
/add_md80s service.
For example:

rosservice call /add_md80s "drive_ids: [200, 800]"

Should produce the following output:

drives_success: [True, True]
total_number_of_drives: 2

informing, that both drives (ids: 200 and 800), have been successfully contacted, and were added to the
node's drives list.
You can also look for status messages in the terminal window where the node was started:

According to the status messages we have added two MD80 actuators.

Set mode
Next the desired control mode should be selected. This is accomplished with /set_mode_md80s service.
For example:

rosservice call /set_mode_md80s "{drive_ids: [200, 800], mode:["IMPEDANCE", "IMPEDANCE"]}"

Should produce:

drives_success: [True, True]

Informing that for both drives mode has been set correctly.

Set Zero
Often when starting, setting a current position to zero is desired. This can be accomplished with a call to
/zero_md80s service.

rosservice call /zero_md80s "{drive_ids:[200, 800]}"

Enabling/Disabling drives
Using services /enable_md80s and /disable_md80s the drives and the node publishers and subscribers can
be enabled/disabled.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

Note: After calling /enable_md80s service, no calls to services other than /disable_md80s should
be done.

After enabling, the node will publish current joint states to /joint_states at a frequency dependent on a
currently chosen communication bus and speed mode. Joint names are generated based on drive ID, for
example, a drive with id 546 will be called Joint 546.

The node will also listen for the messages on topics for controlling the drives. All of the above topics are
listened to all the time, but currently applied settings are dependent on the md80 mode set before enabling.

rosservice call /enable_md80s "{drive_ids:[200, 800]}"

rosservice call /disable_md80s "{drive_ids:[200, 800]}"

Controlling drives
Controlling the drives is done via the four topics listed above. For commands to be viable, all fields of each
message must be filled properly. For example, to set up custom gains for IMPEDANCE mode use:

rostopic pub /md80/impedance_command candle_ros/ImpedanceCommand "{drive_ids:[200, 800],
kp:[0.25, 1.0], kd:[0.1, 0.05], max_output:[2.0, 2.0]}"

Example set up of custom gains for POSITION PID mode:

rostopic pub /md80/position_command candle_ros/PositionPidCommand "{drive_ids: [200, 800],
position_pid: [{kp: 40.0, ki: 0.5, kd: 0.0, i_windup: 10, max_output: 3.0},{kp: 20.0, ki: 0.5, kd: 0.0, i_windup:
10, max_output: 3.0}], velocity_pid: [{kp: 0.2, ki: 0.3, kd: 0.0, i_windup: 2.0, max_output: 2.0}, {kp: 0.1, ki:
0.1, kd: 0.0, i_windup: 1, max_output: 2.0}]}"

Example set up of custom gains for VELOCITY PID mode:

rostopic pub /md80/velocity_command candle_ros/VelocityPidCommand "{drive_ids: [200, 800],
velocity_pid: [{kp: 0.2, ki: 0.3, kd: 0.0, i_windup: 2.0, max_output: 2.0}, {kp: 0.1, ki: 0.1, kd: 0.0, i_windup: 1,
max_output: 2.0}]}"

Setting desired position, velocity, and torque is done via /md80/motion_command topic. Note that for it to
take effect, all fields in the message should be correctly filled. For example, to move the drives in impedance
mode, it is possible to use the following command

rostopic pub /md80/motion_command candle_ros/MotionCommand "{drive_ids:[81,97],
target_position:[3.0, -3.0], target_velocity:[0.0, 0.0], target_torque:[0, 0]}"

Quick start - ROS2
Let’s run a simple example of the candle ROS2 node. In order to run the node, clone it into your local ROS2
workspace. After that, build it with colcon and run using the ros2 run command. Be sure to source your

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

workspace with source install/setup.bash prior to running the package, and in each new terminal window
you're going to send commands related to the node.

First, let’s run the node with arguments that fit your MD80 x CANdle setup. The general syntax is:

ros2 run candle_ros2 candle_ros2_node <BUS> <FDCAN baud>

for more information on how to run the node you can call

ros2 run candle_ros2 candle_ros2_node --help.

Example output from the terminal after launching the node:

In this example, we will be working with a USB bus and 8M FDCAN baudrate.

Adding drives
Firstly, the node should be informed which drives should be present on the FDCAN bus. This can be done via
/candle_ros2_node/add_md80s service. Note: Do not forget to source your ros2 workspace in new terminal
window
For example

ros2 service call /candle_ros2_node/add_md80s candle_ros2/srv/AddMd80s "{drive_ids: [200,800]}"

Should produce the following output:

response:
candle_ros2.srv.AddMd80s_Response(drives_success=[True, True], total_number_of_drives=2)

informing, that both drives (ids: 200 and 800), have been successfully contacted, and were added to the
node's drives list.
You can also look for status messages in the terminal window where the node was started:

According to the status messages we have added two MD80 actuators.

Set mode
Next the desired control mode should be selected. This is accomplished with
/candle_ros2_node/set_mode_md80s service.

For example:

ros2 service call /candle_ros2_node/set_mode_md80s candle_ros2/srv/SetModeMd80s "{drive_ids: [200,

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

800], mode:["IMPEDANCE", "IMPEDANCE"]}"

Should produce:

response:
candle_ros2.srv.SetModeMd80s_Response(drives_success=[True, True])

Informing that for both drives mode has been set correctly.

Set Zero
Often when starting, setting a current position to zero is desired. This can be accomplished with a call to
/candle_ros2_node/zero_md80s service.

ros2 service call /candle_ros2_node/zero_md80s candle_ros2/srv/GenericMd80Msg
"{drive_ids:[200,800]}"

Enabling/Disabling drives
Using services /candle_ros2_node/enable_md80s and /candle_ros2_node/disable_md80s the drives and the
node publishers and subscribers can be enabled/disabled.
NOTE: After calling /candle_ros2_node/enable_md80s service, no calls to services other than
/candle_ros2_node/disable_md80s should be done.

After enabling, the node will publish current joint states to /joint_states at a frequency dependent on a
currently chosen communication bus and speed mode. Joint names are generated based on drivie ID, for
example, drive with id 546 will be called Joint 546.

The node will also listen for the messages on topics for controlling the drives. All of the above topics are
listened to all the time, but currently applied settings are dependent on the md80 mode set before enabling.

ros2 service call /candle_ros2_node/enable_md80s candle_ros2/srv/GenericMd80Msg "{drive_ids:[200,
800]}"

ros2 service call /candle_ros2_node/disable_md80s candle_ros2/srv/GenericMd80Msg "{drive_ids:[200,
800]}"

Controlling drives
Controlling the drives is done via the four topics listed above. For commands to be viable, all field of each
message must be filled properly. For example, to set up custom gains for IMPEDANCE mode use:

ros2 topic pub /md80/impedance_command candle_ros2/msg/ImpedanceCommand "{drive_ids: [200,
800], kp: [1.0,1.0]], kd: [0.001,0.001], max_output: [1.0, 1.0]}"

Example set up of custom gains for POSITION PID mode:

ros2 topic pub /md80/position_pid_command candle_ros2/msg/PositionPidCommand "{drive_ids: [150,
350], position_pid: [{kp: 40.0, ki: 0.5, kd: 0.0, i_windup: 10, max_output: 3.0},{kp: 20.0, ki: 0.5, kd: 0.0,
i_windup: 10, max_output: 3.0}], velocity_pid: [{kp: 0.2, ki: 0.3, kd: 0.0, i_windup: 2.0, max_output: 2.0},
{kp: 0.1, ki: 0.1, kd: 0.0, i_windup: 1, max_output: 2.0}]}"

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

Example set up of custom gains for VELOCITY PID mode:

ros2 topic pub /md80/velocity_pid_command candle_ros2/msg/VelocityPidCommand "{drive_ids: [200,
800], velocity_pid: [{kp: 0.2, ki: 0.3, kd: 0.0, i_windup: 2.0, max_output: 2.0}, {kp: 0.1, ki: 0.1, kd: 0.0,
i_windup: 1, max_output: 2.0}]}"

Setting desired position, velocity, and torque is done via /md80/motion_command topic. Note that for it to
take effect, all fields in the message should be correctly filled. For example, to move the drives in impedance
mode, it is possible to use the following command

ros2 topic pub /md80/motion_command candle_ros2/MotionCommand "{drive_ids: [200, 800],
target_position: [3.0, 3.0], target_velocity: [0.0, 0.0], target_torque: [0.0, 0.0]}"

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

4.4. MD80 update tool - MAB CAN Flasher
MAB_CAN_Flasher is a console application used to update the MD80 controller software using CANdle.
When an update is released our engineers will prepare a MAB_CAN_Flasher application and send it to you.
The MD80 firmware is contained in the MAB_CAN_Flasher application itself. To update the firmware connect
the CANdle to the PC and the MD80 controller(s), and apply the power supply. You can make sure all the
controllers are functional using MDtool and the mdtool ping all command before you proceed to update
the controllers. After that, you are ready to run the update tool. We highly advise you to call
./MAB_CAN_Flasher -help command on the first use to get acquainted with the available options.

Example use cases
./MAB_CAN_Flasher --id 150 --baud 1M - update the md80 controller with id equal to 150, which current CAN
speed is 1M (the default CAN speed is 1M). Example output of this command for an ak80-64 motor:

./MAB_CAN_Flasher --all -baud 1M - update all available md80 controllers, whose current CAN speed is 1M
(all controllers need to have the same speed). Example command output for two md80 controllers:

In case the update process is interrupted and the md80 controller seems to be broken, you can disconnect
the power supply, call:

./MAB_CAN_Flasher --id 69 --baud 1M -wait

and while the command is running connect the power supply. This command will wait for the bootloader
response and try to recover the firmware. If the flashing does not occur in the first power cycle you can
repeat it until the bootloader is detected. The example output of the wait option for the ak80-64 motor is
shown below:

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

4.5. CANdle update tool - MAB USB Flasher
MAB_USB_Flasher is a console application used to update the CANdle software using USB bus.

Currently, only updates over USB are supported (updates over SPI and UART are not supported). When an
update is released our engineers will prepare a MAB_USB_Flasher application and send it to you. To update,
first turn off all applications that may be using CANdle, and simply run ./MAB_USB_Flasher.

After a successful update, the CANdle device is ready.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

5. Common Issues and FAQ
5.1. How to check if my motor is operating properly

First thing to check is the mdtool setup info <ID> command output. If there are no errors (meaning the error
field shows 0x00, or it shows only the CAN watchdog warning) the drive did not detect any issues by itself.
The other thing is to make sure that the actuator runs smoothly - such that there is no excessive cogging
torque when rotating (you can check it using mdtool test command). The last thing to check is the motion
parameters - position velocity and torque. You can check them by looking at the mdtool encoder command
output. If any of these quantities look suspicious feel free to contact us using: contact@mabrobotics.pl.

5.2. Motor not soldered properly
In case you have ordered the MD80 controllers without the MAB assembly option you will have to make sure
the controller is soldered correctly to the motor. Usually, hobby motors have multiple wires wound in
parallel on each motor phase, and it is crucial to solder ALL wires to the controller. Leaving a single string of
wire can lead to an imbalance between the phases, which in the best scenario will cause the calibration to
fail and in the worst will cause large torque variations (large cogging torque).

Warning: Operating such an improperly configured motor can lead to hazardous situations for both
the operator and the driver.

5.3. Failed calibration
The calibration can fail for several reasons, yet the most common one is just improperly soldered motor
wires. In this case, you’ll see the ERROR_CALIBRATION general error or ERROR_CALIBRATION and
ERROR_PARAM_IDENT. These two errors will also show up when automatic parameter identification fails. In
this case, rerunning the calibration should fix the issue. ERROR_POLE_PAIR_DET error is shown in case the
automatic pole pair detection algorithm detected a different pole pair number (compared to the one form
the *.cfg file) or it failed due to high rotor friction/external load, which stopped the rotor during the process.
The other most common reason is that the eccentricity calibration is interrupted by either a large load on the
motor shaft or the encoder placed non-axially in regard to the magnet mounted on the motor shaft. In this
case, you'll see the ERROR_CALIBRATION general error. To fix it be sure to unload the motor shaft completely,
make it run smoothly, and make sure the controller is placed axially with respect to the magnet placed on
the motor shaft.

5.4. Lack of FDCAN termination
Proper termination on the FDCAN bus is crucial, especially when the string of actuators is long. In case you
see some communication errors, or the drives connected to your FDCAN bus string are not discovered
correctly using MDtool be sure to check if the termination is present and working (the resistance between
CANH and CANL lines should be 60 Ohms - two 120 Ohm resistors in series). Please remember, you only need
to place a single termination resistor on the end of the string when using CANdle. The other resistor is
embedded in the CANdle device.

Warning: since version HW2.0 a resistor is embedded in the hardware of each MD80 controller. Please
check out the mdtool config can command for more information on how to use it.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl
mailto:contact@mabrobotics.pl

5.5. Different FDCAN speeds between actuators
MD80 x CANdle ecosystem is not adopted for working with actuators of different FDCAN baudrates. Trying to
control actuators with different baud rates on a common FDCAN bus can cause the communication to fail or
not start at all. This is why it is crucial to make sure when you call the mdtool ping all command, all
discovered MD80 controllers lie in a single baudrate category. If that’s not the case, use the mdtool config

can command to fix it.

5.6. Too-low torque bandwidth setting
When the torque bandwidth is set to a too-low value it can cause the motor to behave improperly in highly
dynamic scenarios, for example, impacts. Because with low torque bandwidth, the torque controller gains
are set so that the controller is slow, it might not be able to keep up with the changing setpoint value. In
order to fix this issue, you can calibrate the motor for a higher torque bandwidth frequency. This has a
disadvantage connected to it - the higher the bandwidth the more audible noise you will hear coming from
the motor.

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

Revision history

Revision Release date Changes

v1.0 December 2021 Preliminary release

v2.0 September 2022 CANdle HAT release + software pack update

v2.1 December 2022 MD80 HW2.0 and CANdle no-config update

www.mabrobotics.pl
contact@mabrobotics.pl

mailto:contact@mabrobotics.pl

